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SMALL DEFORMATIONS OF A PLASTIC- 

RIGID BODY AT THE YIELD POINT 

By E. T. Onat* 

1.  Introduction.  Consider a body of plastic-rigid material 

which is loaded by monotonically increased surface tractions. 

Let us assume that the history of loading is completely specified. 

At the earlier stages of loading the body will generally remain 

rigid.  If the loads are increased further some portions of the 

body may become locally plastic.  However, plastic deformation 

of these portions may be prevented by adjacent rigid portions 

until the moment when the body actually begins to deform.  Follow- 

ing Hill [lTi  we refer to this critical moment as the yield 

point of the plastic-rigid body.  If the material is perfectly 

plastic (i.e., non-strain-hardening) and if the accompanying 

change in geometry is disregarded, plastic flow is found to con- 

tinue under constant loads [2].  However, when the change in 

geometry and the effects of strain-hardening are taken into ac- 

count, continuing deformation under constant external forces is 

possible only in exceptional cases [l \     Thus, as a rule, quasi- 

static flow requires either increasing or decreasing external 

forces.  Under the assumed monotonically increasing loading, the 

firs': case represents a stable process, whereas the second case 

leads to sudden collapse. 

* F. 3. Jewett Fellow at Brown University, Providence, R. 1. 

# Numbers in square brackets refer to the Bibliography at the 
end of the paper. 
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The distribution of stress and the corresponding velocity- 

field at the yield-point can be found in some cases (e.g., by the 

method of characteristics in plane strain problems) and in other 

cases approximations from above and below to the yield-ncint load 

can be obtained [1,2].  However, in many cases the present first 

order theory does not furnish a clear criterion for collapse. 

Therefore it seems worthwhile to investigate the second order 

effects in the deformation of a plastic-rigid body at the yield 

Doint. 

In the following the investigation is limited to problems 

where the entire body is in the plastic state at the yield point 

and where the incipient stress and velocity fields are known.  A 

perturbation scheme is developed to obtain equations governing 

Lagrangian stress and velocity increments of the subsequent quasi- 

static motion.  Some examples are worked out (compression of block     I 

between rough plates and the thick walled tube under internal 

pressure).  In the first case the results obtained with the 

theory are found to agree v/ith the experimental results.  In the 

second example the minimum rate of strain-hardening necessary to 

prevent collapse is found. 

2.  Notations and Stress-strain Relations Employed in the Analysis. 

Let x^ denote the rectangular Cartesian coordinates of a generic 

particle at the time t.  If the velocity of this particle is 

denoted by v^, the velocity strain tensor is given by 

, av,  avi 

where Latin indices take the values 1, 2, 3. 

«»— _ 
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The  stress and deviatoric   stress tensors   are denoted 

respectively by o^ and s^y. 

su' °u - {i v«» (2) 

where summation convention is used and 6. . represents the 

Kronecker delta* 

If the second invariant of the deviatoric stress tensor 

is denoted by J2, 

'ai'uv (3) 

The particular stress-strain relations considered in this paper 

are DJ- 2    DJ' 
e1J = P(J2

)sij Dt   When    J2 ^ k and l*r 1 ° 

£ir° when 

DT 

J0 < k
2 or ££2 < 0 2       Dt 

(if) 

where DJ2/Dt is the material derivative of J2« 

The limiting case where 

DJD 
F(J2>_>co ^->0 

defines an ideally plastic material: 

Jo • k2, 

eil = ^sn       wnen       \ 2 ° 

ei1 = ^ when       \ < 0. 

J. (5) 
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The stress and deviatoric  stress tensors  ere denoted 

respectively by <J^J and s^y. 

(2) SU = dU " (3 dtt)6U' 

where  summation convention is used and  6.. represents the 

Kronecker delta. 

If the second invariant of the deviatoric stress tensor 

is denoted by J2, 

J2 = 2SijV (3) 

The particular stress-strain relations considered in this paper 

are DJ^ 2    DJ' 
•±J = P(J2)si;J Dt 

e  = 0 

when 

when 

J2 ^ k and -^ 2 ° 

2    DJo 
J0 < k or 112 < 0 2       Dt 

^ (if) * 

where DJ2/Dt is the material derivative of J2« 

The limiting case where 

DJ0 
F(J2)-»co ^f-^0 

defines an ideally plastic material: 

Jo = *2, 

e. .  - Xs when        X 2 ° 
1J A J 

ei1 = ° when        X < 0. 

• 

(5) 

I 
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3. Formulation of the Problem.  Consider a plastic-rigid body 

at the yield point.  Suppose that the boundary conditions are 

such that every element of the material is in the plastic state* 

-ioreover assume that a velocity field v° is associated with the 
i 

stress-state 0,9 where vj and  0.,? are the Cartesian components 

of the velocity and  stress tensors,     vj and  ^9  satisfy the  bound- 

ary conditions imposed on the displacements and  the  stresses in 

addition to the following equat: Lons: 

eili - °- (Equilibrium) (6) 

s °s °-  Pk2 (Yield condition) (7) 

Mti 
+ i, i> - Af Xs°ij (Stress  strain rela- 

tion) 
(8) 

where 
x > 0. 

We note that this solution is valid for an ideally plas- 

tic material and also for a newly annealed rigid-strain-hardening 

material which has the  same yield  stress,  k,  in pure shear. 

Wow assume that the  surface tractions  are varied in such 

a manner that the further distortion following the reaching of 

the yield point takes place  in a quasi-static manner. 

We now consider the early stages of  the distortion such 

that the  state of velocity-strain and stress differs only slightly 

from the  state which is given by Eqs.   (6),   (7),   and  (8), 

Let x.  be  the Cartesian coordinates of the material point 

a    at time t: 
Xi = xirV 6(t)] (9) 

where 6(t) is a monotonously increasing function of time awi 

1 

 It 
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6(0) = 0,  x.fa . 01 = a<. 

If the velocity and acceleration at time rero are con- 

tinuous functions of the space variables, the validity of the 

following expansion may be assumed: 

2 
xi = ai + vi(ap)6 + Yi(ap) ^- + ...       (10) 

2 2 where to obtain a quasi-static flow,  d6/dt;  d 6/dt    are supposed 

to be as small as desired.     Since the  stress-strain relations 

envisaged in this theory are  homogeneous  in time,  the actual form 

of these functions is of no importance in the  problem considered. 

The velocity of the material point ap at time   6 referred 

to the fixed rectangular Cartesian coordinates is then given by 

•i = (v° + r±b + ...) ^ . (ii) 

The velocity strain tensor defined in the Eulerian manner 

, av,     av1       , av, aan     av   aa 

From (10),   8a /3x^ can be evaluated  (see Appendix)  in 

terms of v°: 

i*£ = 6      - 6v°       + ... (13) 
taj       PJ        p,j 

where a comma denotes partial differentiation with respect to a.*. 

From the last three equations, we obtain 

eij  =  [eiJ  + 6eiJ  + •••] S ilh) 

where  e ° = fyv± ^ + v? t)  and 



All-90 6 

^i'^^j.i'-Kp'^rW,!1'   (15) 

Let <jj.i(a_,&) be the components of the stress tensor at 

the point x^ = x,(a ,6), referred to the fixed rectangular Car- 

tesian coordinates. For small deviations from the yield point 

state we again assume that 

d«, = o° (a ) + be'  (a )+...•        (16) 

We now examine conditions and equations which must be  satisfied 

during the quasi-static distortion of the body after the yield 

point* 

a* Equations of Equilibrium: Since a quasi-static notion 

of the body is considered, the Equations of Equilibrium must be 

satisfied during the subsequent flow: 

iU = ilil . £» = 0, (17) ax3      8Sp      ax3      ' 

where body forces are neglected. 

Using (13) and (16)  this becomes 

6o° del* QdQ 
~U + 6[-ii-v        ^1]=0 (18) 

J J P|^   9ap 

where only the terms up to the order 6 are retained.  The first 

term of this equation vanishes according to (6), hence the Equili- 

brium Equations satisfied by the Lagrangian stress increments are 
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b.     Stress-Strain Relations.    An investigation of the  stress- 

strain relations at time zero and time 6 provides  six additional 

equations for Lagrangian Stress- «ixid Strain increments* 

At time 6=0, 

. dJ9(a .&) 
e°    = F(J2)s?,      2    p (20) 
ij *    ij dfc 

where 

2J2(ap,M  = 5°^  * 26.^.^ * ... 

and 8i1 denote increments of the deviatoric  stress tensor.    There- 

fore if the terms up to the order of unity are retained, 

dJ2        o     • •    —    e        a 

\ 
| 

r 

3T = 8-s 

and  (20)  gives 
W PQ 

o ,.    -       * * s„„3'n  = & (21) 

'ij 

where the right hand side  is not  summed and any combination of 

(i,j) may be chosen provided that s°    t 0. 

If the material is ideally plastic  (21)  becomes 

s°s'    = 0, (22) 
pq pq 

At time by  in addition to the equation of incompressibility, the 

stress-strain relations provide four independent equations of 

the following type: 

Jl.Jtt, (23) 

where a?ain the summation convention does not apply.  Using (8), 

(1?) and the definition of a±*, and retaining terns up to the 

order of b  one obtains the following equations 

»» 
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• o e. .s • •?«•'  -e° s' - ,' .• =0,      (2lf) 

where (i,j,p,q) are to be chosen in order to give four independ- 

ent equations. 

On the other hand the equation of incompressibility, which 

is obtained from the contraction of the tensorial equation (*+), 

gives 
•u = o, 

and using (1*0 and (15), and observing that e° = 0, we get 

Y   - v? v° . = 0. (25) Ti,i   i,P Pji 

We note that Bqs. (19), (21) (or 22), (2h)  and (25) provide nine 

linear equations for the nine unknowns o!. and Y,»  Ii the case 

of plane strain, Eqs. (19) and (21) or (22) provide three inde- 

pendent equations for three unknown stress-increments. Therefore 

if the boundary conditions are of the stress type the problem is 

statically determined, 

c. Boundary Conditions. We first examine conditions which 

must be satisfied at a boundary surface, S•, of the body at which 

surface forces are prescribed.  Denote by Q^ the components of 

the surface tractions in the fixed rectangular Cartesian coordi- 

nate system: 

Qi(ap,6) = Q°(ap) + ^[i^)  + ... .       (26) 

Suppose that Sp is defined by the following equation 

F(ai,a2,a3)  = 0 (27) 

where as before 

r 
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xi = xi(ap>6) 

or 
^ = ap(xlf6) 

and it is assumed that points originally on the boundary surface 

remain on a surface during the deformation.  At time 6 , the 

unit normal n of the surface S~ has direction cosines propor- 

tional to 6F/dx^.  Using the series expansions and (15) one ob- 

tains: 

n = n° + 6n' • ... = k JJL = k fp-(6^ - 6v° J, 
P   P    P        8x    ea- rp     T 

P     ~ *>P 

or 

-5 + an
1 = k(M- - 6F vf ). 

da >* r»P 
(28) 

The magnitude of k must be such that 

n n    = 1 
P P 

(unit normal). (29) 

From (13)   and  (Ih) 

k = + 
F    F    v°     n 

1+6    »p   »r r'p 
(30) 

\/VV 
where the  sign will be properly chosen to obtain the outward 

normal of the  surface. 

On the other hand,  the surface  tractions are related to 

the   stresses bv 

or 

Qi = VPi 

Q° • b^[ + ...   = (d^ + bd^ + •••)(n£ + bn    + ...), 

Qi = o'n° + d°n'. i        pi p        pi p 

From (28)  and  (30); 
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n? r +        ip        , 

0 
F    F    v 

^   "^j'u     'P    F'kF'k 
- F 

.1' r,P 

and therefore the increments of the surface tractions are related 

to the increments of the stresses by the following formula: 

Pl V'.j'.j  V/^j'.j  '   P,3F,3 
**^^ " »,r*;,pl. (3D 

As to the displacement boundary conditions, we infer that 

on Sv, Y4 is given as functions of the original coordinates* 

The theory has now been taken to a point from which 

applications may be made to specific problems. 

Example 1.  Compression of Block Between Rough Plates: 

Consider a block of strain-hardening (or ideally plastic)* 

rigid material compressed between rough plates (Fig. 1). 

When the block is very wide compared with its height, the 

slip line field corresponding to the incipient motion is independ- 

ent of x, and the incipient stress and velocity fields are given 

by Prandtl [3] and Nadai Mi 

and 

00 
-X s - c - <B3 

T? = -  c "f k        h 

• aVl - B2 £ 

xy  my 
k " h 

1 

7 

<o 

(32) 
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a = c +Z - J2\/i - m2 Z- 
U h      mV v (33) 

v .      2 
V " " h * 

where k is the yield  stress    in pure  shear,  m is a measure of 

roughness  [0  < m <! 1;  m = 1 for perfectly rough plates] and 

c = SuUL «B +V/1 - m2, 
m f 7 

C = - i + _________ + 1  v/l- m2 . 

(3s*) 

2 m 
m 

These equations state that when the normal pressure, p, 

applied by the plates reaches the value given by 

£ = c + 32 + 2 V/l - m2 
k     h 

the plastic rigid block begins to deform according to the velocity 

field (33).  As stated before we are interested in the subsequent 

neighboring deformation of the body and in the rate of increase 

of the external forces to achieve this deformation. 

If (x,y) are regarded as Lagrangian coordinates and if 

the current coordinates are denoted by (x,y), 

x = x + b£  + ... 

y = y + 55 + ... 

where b   denotes the compression. 

Equations (19) and (21) provide three independent rela- 

tions to determine the Lagrangian stress increments d^» oy> t-y. 

T*rora (19), (32) and (33) 
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where 

Prom (21) 

do •        da ' 

ax        ay        u2 
V 

ao'     8T • 

3y dx        h    ,y 

f(y)  = 2 \/l - m2 £* . 

-   d      + Ha       n = -      w?w       *  • x      °y      ^xy h? m
2
k

2
F    7 

12 

(35) 

(36) 

If it is assumed that (o^ - a') and a' are functions of y only, 

the above equations, with the boundary conditions a  = 0 when 

y = 0, and a^ = mk when y = h, give 

'I 

V = ° 
' = £ f - 2k 4? 

f,y 

r* (37) 

x   y  m^pF y y  m^k^F 

where b is an undetermined constant. To determine b let us con- 

sider the surface AB which after a small deformation becomes a 

plane, A'B', parallel to the y-axis, Fig. 1. 

Transformation from AB to Ar3! is given by 

£+r(c+£--)=!=: constant h  h    n  m   h 
> 

£ (1 --) h    h 
_ y 

(38) 

Since the left hand edge of the block is free from stress, the 

overall equilibrium condition demands that 

^h(l-&/h) 

cxdy = - mkx. (39) 

L_. 
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Using (32), (37), (38) the last equation gives 
h 

mkC + bh -a— 
orlrF 

IlZ dy = 0, 
y 

0 
hence r> ,i «\ mkC + bh = s- arc sin m. (MO; 

mk^F 

The normal stress in y-direction is then obtained from (37) and 

oy = «° • 6«; - (f-o)k - mk £ [X • |] - r "J^". <«*> 

The average normal pressure required to continue the deformation 

is therefore     

P = - (2 yi - m2 - c)k + o& [1 + k] + Si ass gin a. (i*2) 
2h     h   h  mk2F 

In order to compare this result with experiment [5]» let 

us consider the case m = It 
! 

k  2  2H  h L
k3F  2H-I * K**J 

The dimensionless quantity Fk^ can be obtained from the stress- 

strain curve in compression: 

! ^3=^-r- 
where d is the yield stress in compression and dd/de is the slope 

of the stress-strain curve. 

The stress-strain curve of the material used in the ex- 

periments is shown in the Fig. 2.  The material begins to deform 

plastically at 50  Bars and at this point 

* = ^ dg/d£  1125. 
Fk3   Vl       * 

« • f 
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Hence according to  (^3),[the slope of the load-deforma- 

tion curve ] at the beginning of the deformation is  strongly- 

dependent on the rate of  strain-hardening  since 

Fk3       2H 

The resxilts obtained from the experiments agree with this 

observation (Pig. 3).  Moreover the straight line (I) defined by 

the equation (*+3) follows closely the experimental results. 

In order to have an idea on the shape of load deformation 

curve, one can approximate the stress-strain relation with an 

ideally plastic material (F—^00) as shown in Fig. 2.  The 

straight lines (II) defined by (*+3) are approximate load-deforma- 

tion curves corresponding to this idealized material (Fig. 3), 

Example 2t Cylinder Under Internal Pressure; 

A tube made of plastic-rigid material is subjected to 

internal pressure. The tube is supposed to be long enough so 

that the axial deformations of the tube can be neglected.  If 

the yield stress of the material is denoted by k, incipient stress 

and velocity fields are given by (Fig. h) 

and 

«r° = 2k log X 
b 

r 

<>2 = 2k (1 + log 
b 

O 
r© 

s 0 

0 
•(r) 

r 1 

> 

(W 

The material points situated on the circle of the radius r would 

move after time 6 to another circle with the radius r 

\ 



I • 
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r = r+.3& + ... • 
r 

The physical conmonents of the stress in these elements 

would be given by 
d = o2 + be   + ... r   r    r 

d0 = C3« + 6dA + ... 9 = °e + 6oe 

T-    = «rO   = 0. Tr©  Tr0 

The Equilibrium Equation satisfied by the Lagrangian Stress- 

increments is found either from the tensorial Equation (21)j 

or from a straight forward derivation: 

j 9°; . «J * 6L £ + -2 S + lffc -3L = 0. (1+5) 
v r       r3 

On the other hand, Equation (16) gives 

6   r  r2k2p 

Eliminating d' from these Equations 

 £ a + lia = o 
Or   k2Fr3   r3 

J!i + ak [ if . JL ] =0 
ar   r3     k3F 

°r - A*- [ >f - -1- ] + c = 0. 
2r^     k3F 

Using the boundary condition 

d» = 0  at  r = b r 

* This equation must first be rewritten for curvilinear coor- 
dinates. 
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we  get 

I   . r       2 k3F <-f^-±x$-& 
and 1 -I-.-, 

<s   (r,6)   = 2k log i +# [if - -4-3C-L - -L]6. (1+7) 
r b      2 k3F     r2     b2 

It is easily  seen from this equation that  if 

lfkJ 

|dr(a,6)|   <  |<Jp(a,0)|, 

hence a quasi-static motion can only be maintained with decreas- 

ing pressure.      [In the case where F—>co (ideally plastic mater- 

ial),   (*+7)  checks with a previous analysis   [6]].     However if 

F  <-i- 
l+k3 

deformation can be continued with increasing pressures.     In 

terms of a simple  stress-strain relation in compression the  in- 

equality (^8) can be written 

d(d/d ) 
  <   V3      collapse 

QE 

d(d/o  ) 
>   \/3      no collapse. 

de 

In Fig, (3), the limiting curve separating the two regions is 

shown. 

.-->* -ivr"-^,- 
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Appendix:     It is well known from Tensor Analysis  [7l that 

^a! = gPm 3x1 (lf9) 
dx 3a 

where gp are the contravariant components of the metric tensor 

of the curvilinear system defined by *P  in the deformed position. 
pm 

However g  are given [8] to the desired order of approximation 

by 
gpm = 6  - 6(v°  + v°  ) 

pm    P>m   m,p 
and since 

^- = 6.  + V° 6 + ,„ , _ m   im   i.m      7 

oa 

(if9) gives 
AoP •&»-, = 6 . - 6v  . + i.« • 
8?   Pl    P'1 

i 

'.'•-•fr 
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f 

0^ No collapse 
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dc 
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••» 
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